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“stLnating Dependent Life Length; with 
-Applications to the Theory of Competing Risks : ‘ ~~~~~

N. Langberg1, P. ~~oschan1 ~~~~ and A. j . ~ iinzi2 Ln \ ~ABSTRACT

In the classical theory of competing risks (as well as in many reliability

models and incomplete data problems) it is assumed that (a) the risks (i.e.,

the random variables of interest) are independent and that (b) death does not

result from simultaneous causes. Employing our probabilistic solution to a
related problem in probability modelling , we obtain strongly consistent esti-

mators for the unobservable marginal distributions of interest. These estimators

are analogous to those of Kaplan and P4eier (J. Amer. Statist. Assoc. (1958) 
~ J

and are appropriate when the assumptions of independence and no slaaltaneous

causes of death [(a) and (tb), above] fail to hold. We show how our methods can

be used to unify and simplify the nonparametric approach toward estimation in
the competing risks model. As a consequence we obtain an elementary proof of
the strong consistency of the Kaplan-Meier estimator. Our results extend and

• simplify the work of Peterson (J. Amer. Statist. Assoc. (1977) Z~
) and Desu

and Narula [The Theory and Applications of Reliability, 
~~
, ad. by I. Shiai and

C. P. Tsokos (1977)].

1The Florida State University

2Te.ple University

3Res.arch supported by the Air Force Office of Scientific Research under
APOSR Grant 74-25810.
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1. Introduction and st~~ary .

Langberg, Pxoschan , and Quinsi (1978) (hereafter referred to as LPQ (1978)]

show that under certain mild conditions it is possible to establish a particular

equivalence between an arbitrary system of dependent components and a system of

independent components. The two systems are equivalent in the sense that they

possess (1) the same distribution for the time to system failure and (2) the

same probabilities of occurrence of each failure pattern . In the case of a

series system, a particular failure pattern occurs when the failure of a

particular set of components coincides with the failure of the system. The

LPQ (1978) result extends results by Miller (1977) and Tsiatis (1975) . In

Section 2 we state the LPQ (1978) result. Although forsulated in reliability

terms, the result applies to any model where observations consist of (1) the

time at which a particular event occurs and (2) the identity of the cause or

combination of causes (among a finite ntmber) which results in the occurrence

of the event • In particular, in population mortality studies , the data on

each subject includes (1) the age at death and (2) the cause (s) of death. In

this case, an individual dies due to the occurrence of one or more of a finite

lEmber of possible causes of death , which are sometimes viewed as “competing”

for the individual ’s life. Moreover , one or more of the “causes” might be

identified with withdrawal of an individual from observation (referred to as a

“ loss ” ], resulting in censored or truncated data. Thus, the LPQ (1978) result,

as well as the methods dev.lop.d in this paper , apply in at least three contexts

of interest--(1) engineering or reliability models, (2) compet ing risks models ,

and (3) various models involving incomplete data .

_ _ _ _ _  _ _ _ _ _ _ _ _ _  

• —~~~~~~~



In the classical theory of competing risks it is assumed that the risks

act independently and that death does not result from simultaneous causes. In

Section 3 we describe the competing risks model. We examine the classical

assumptions and introduce the Kaplan-Meier (1958) (K-M) estimator . Employing

the LPQ (1978) result , we obtain in Section 4 strongly consistent estimators

for the unobservable marginal distributions of interest in the competing risks

model. These estimators are analogous to those of Kaplan and Meier (1958)

and are appropriate when the assumptions of independence and no siadtaneous

causes of death fail to hold. We show how our methods can be used to unify

and simplify the nonparametric approach toward estimation in the competing risks

model. As a consequence we obtain an elementary proof of the strong consis-

tency of the Xaplan-Meier estimator.

Our results extend and simplify the work of Desu and Narula (1977) and

Peterson (1975, 1977). Section 5 consists of proofs .
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2. From a dependent model to an independent one.

In this section we state, for future reference, the equivalence result of

LPQ (1978) .

To state our model precisely, it is convenient to use the language of

reliability theory (system, component, etc.) although the result is applicable

in a variety of other contexts, especially in the context of competing risks

(see Section 3). A life length T is a nonnegative random variable such that

lim
~..,., 

P(T t) — 0. Let r z (T1, • i • ,  T~) be the vector of component life

lengths in an r-component system and let T denote the life length of the

system. Let 7 denote the collection of nonempty subsets of (1, ..., r}. For

each I a I, we say that failure pattern I occurs if the siaaltaneous failure of

the components exclusively in subset I coincides with the failure of the

system. Define
I, if failure pattern I occur s

•, otherwise.

Let S and T represent the vectors of component life lengths of two systems

whose system life lengths are S and T, respectively. We say that the two

systems are equivalent in life length and failure patterns (S E T, in symbols)

if

P(S > t, 
~

(
~) • I) • P(T ‘ t , ~

(
~) — I), t � 0,

for every Ic 7.

The problem can now be stated as follows. Given the vector Ta (T1, ..., Ti,)

of (possibly dependent) life lengths, determine a random vector 8. 
~
s1~ 

...
~~

- 
—

~~ 
—s -- 

-. _



such that S !. where S1, ~~~ 
S~ are expressible in terms of thd~pendemt

random variables. The solution is found by letting each S~ be the h f .  length

of a component in a theoretical system, where the components are exposed to

independe~it sources of shock as follows . Each component fails if it receives

a shock. There exists one source of shock (sometimes referred to as a

“hamierman”) f or each I a 1. A shock from source I simultaneously kills the

components exclusively in subset I. Let H 7 denote the time (measured from the

origin) until a shock from source I occurs. Then S~ nd.nO~1, 1. £ I),

1 � i � r , and S • H, where S . ain(S~ 1 � i � r) and H — min(H1, I a 1). If

the random vector T (and thus, 
~
) of life lengths has dimension r, then the

vector H of independent times until shock has dimension 2r - 1. The model

thus allows for simultaneous failures among the components in the original

system. Define
I, ifH1 ’H~~for eachJ � I

+, otherwise.

It follows that S ~~ T if and only if

P(H > t , 
~~Q!) — I) •P (T>t, ~Q) — I) (2.1)

for each t � 0 and each I £ 7. If (2.1) holds for every subset I of U, ...,

we write H T. We shall use the following notation throughout. For every -

~

life length T with distribution function ~, let P(t) • PCF ~ t) denote the
corresponding survival probability and let e(F) — sup(t: P(t) ‘ 0}. LPQ (1978)

prove th. following: 
- 

- - • - - 
-

~ 

-

I.

I 
_ _ _ _ _ _  

_ _
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Theorem 2 1 .  Let T - Inin(Ti, 1 � i � r) denote the life length of an r-co.ponent

series system, where T~ represents the life length of component i , i • 1, ..., r.

Define V(t, I) • P(T > t, 
~

Q) z I) and F(t, I) — P(T � t , 
~

(
~) — I) , I £ 7.

Then the following statements hold:

(i) A necessary and sufficient condition for the existence of a set of inde-

pendent random variables (H1, I e 7} which satisfy H~~~T, where H - ain(H1, I a 7),

is that the functions F(., I), I c 7, have no connnon discontinuities in the

interval (0, o(F)).

(ii) The random variables (H1, I c l} in (i) have corresponding survival

probabilities {~~(.), I a I) which are uniquely determined on the interval

(0, ci (F)] as follows :

• It (P~(a)/r(a )] exp(_J~ CdPC (. , I)/P) , 0 � t � ~(F), (2.2)

Cwhere F C. , I) is the contiaious part of F ( ,  I) , the product is over the set

of discontinuities (a) of F ( ,  I), I £ 1, and the product over an empty set

is defined as unity.

Remark 2.2. Formula (2.2) is defined in LPQ (1978) for t in the half-open

interval (0, a (P)) . The present formulation is, however, equivalent.

Remark 2.3. In Theorem 2.1, suppose that failure pattern I is non-occurring

for some I £ 7 , i.e., suppose P(C W — I) — 0. Then F(t , I) — P(T �

- I) • 0 for each t � 0. By (2.2) , 
~~ 
! 1 on the interval (0, a(P) ].

The corresponding random variable H7 has a distribution which places no mass on

the interval (0, e(P)]. We can view H1 as corresponding to a ha er n who

does not strike in the interval (0, a(P) ]. If z(P) — •, then H7 is degenerat.

TJ .III.

~

I ~~~ --~~~~~~ :__ _ _ _ _
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at infinity (and so is not a life length) . In the same way, every non-occurring

pattern can be associated with a hamnorman who does not strike. It follows

from Theorem 2.1 that if the original system has exactly a occurring failure

patterns 1 ~ m � - 1, then the original system is equivalent in life

length and failure patterns to a system involving the same number a of inde-

pendent random variables (H~, 1 � i � m}. In particular , suppose we add to

the hypothesis of Thecirem 2 • 1 the assumption that death (failure) does not

result fr om simultaneous causes (so that PCF~ - T~) • 0 for i ~ j). Then

the original system has at most r occurring failure patterns and so can be

replaced by a system involving at most ~ independent random variables H~.

Remark 2.4. Suppose that the original vector T in Theorem 2.1 is itself a

vector of independent random variables and the functions F(. , I), I a 7 , have

no conmion discontinuities. Then it is not difficult to show that a solution

S to the above problem is such that S and T have the same distribution.

k. _ _
~~~ - -- - - - - - - - - - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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3. The independent competing risks model: the Kaplan-4feier estimator.

Let there be a finite number of causes of death labelled 1, ... , r. We
associate with each cause j a nonnegative random variable ~~~ j • 1, ..., r.

~he random variat le T~ represents the age at death if cause j  were the only
cause present in the environment. (In a reliability setting T

3 
denotes the

life length of component j  in a series system of r components. In an incomplete
or censored data problem, one of the random variables T~ represents the time at
which an individual becomes “unobservable” for a reason other than death , while
the remaining variables typically represent various causes of death. The

complete collection of random variables T1, ~~~•, 
Tr is not observed. Instead,

only two quantities are observed: the ~g~e at death given by t • min(T1, • • • ,  Tr)

and the cause of death, labelled ~, given by the subset I of (1, ... , r} such

that r — Ti for each i £ I and r � T~ for each i 4: I. When death results from
exactly one of the r possible causes , as is usually assumed , then ~ is the

index i for which t = T~. The biomedical researcher is interested in making

inferences about unobservable quantities (viz., the random variables T1, ~~~~~ 
Tr)

by using data from observable quantities--in this case, the lifetime r and

the cause of death F~. In particular, he seeks to estimate the

survival probability corresponding to a given cause (or combination of causes)

operating along without competition from the other causes. That is, he wishes

to estimate the 2r - 1 survival probabilities

~i~(t) — Ptain (T~ j  £ J) > t J ,  J c (1, ..., r}.

In analyzing competing risk data , various authors typically assume one

or more of the following :
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(Al) The risks (i.e., the random variables T1, •. • ,  Tr) are mutually independent .
• (A2) Death does not result from simultaneous causes. (Consequently,

P(T~~— T ~)~~~O f or i x ~~.]

(A3) The distributions of T1, ••~~~ 
T~ have no comnon discont inuities.

(A4) The random variables T1, ..., T~ have a loint distribution which is

absolutely continuous.

For many years there have been several approaches to problems of est1~~tion

in competing risk theory which employ, in varying degrees, the above assumptions.

For example, the assumption of independence (Al) was until recently almost

universally made even though it is obviously inappropriate in many problems.

Moreover, assumptions (A2) through (A4) need not hold in certain situations of

interest. For example, (A2) and (A4) do not hold in engineering systems where

system failure can occur as a result of the simultaneous failures of two (or

more) components. Assuming (Al), (A2) and (A3), Peterson (1975, 1977) shows

how the Kaplan-Meier estimator may be expressed as a function of the empirical

• counterparts of the fuiutions F(, I), I £ I , in Theorem 2.1. He tbus indicates

a way to obtain strong consistency of the estimator when ‘F is a vector of

discrete random variables. In this paper we show how Theorem 2.1 can be used

to approach the problem of estimating the marginal distributions of interest

in a unified way without making ~~~ of the assumptions (A2), (A3), or (A4) .

We assume only a weaker version of (A3). Moreover, we are able to drop the

assumption of independence (Al) and find necessary and sufficient conditions

for the existence of consistent estimators for the marginal distributions of

interest. Peterson (1975) also considers the case of dependent risks. In

Section 4 we show how our methods extend and simplify those of Peterson.

. •~~~~~~~~ • •~~•
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Let — (T1~, ..., Tri)~ 
i — 1, •. .,  it , represent a random sample from

the joint distribution of the nonnegative random variables T1, ••~~~ 
T~1,.

Denote the marginal distributions (survival probabilities) of T1, •~~~•,

by Mj (
~
ii), i • 1, ..., r. For each I £ 7, let M1(t) • PCT1 � t), where

T1 — ain(Ti, i £ I). Assume (Al), (*2), and (*3). Then the cause of death

~)-iif and on1y if T1 T~~for eachj*i, 1 � i ,j�r. Por each

i — 1, ..., it , only t j  and are observed , where t
1 

• min(r1~ , 
~~
•• ‘ ‘Fri~ ~

nd

- I whenever t j  a T~1. Consider the case r - 2 and suppose we seek to

estimate the marginal survival probability H1 (t) — P(T1 
> t). Let

0 ~ (0) � ~ ... � t
(~~) 

denote the ordered values of the observations

..., t~~ • Then the ICaplan-Meier (K-H) estimator of 111(t) is

• 
~i1(t)aTt ((n-i)/(n-i+l)], (3.1)

i

where the product is over the ranks i of those ordered observations r (i) ’
1 � i � it, such that T(i) ‘ t < T

(
~~

)  
and t (j ) corresponds to a death from

cause 1 (r (i) • ~~ for some j]. If V (n) corresponds to a death from cause

1, then ~i1(t) is defined to be zero for t > r~~~. Otherwise, F.11(t) is

undefined for t > ‘(n) ’ (In the original formulation by Kaplan and Meier (1958) ,

T1 corresponded to the time until death, while T2 represented the time at which

a loss occurred.]

The K-M estimator (3.1) is a step function with j~~~s at those observations

t which correspond to a death from cause 1 • If no death from caus• 2 is observed

[no loss occurs] , then each observation corresponds to a death from cause 1.

In this case (3.1) reduces to a step function with j *~~ s of height 1/n at each

tbus yieldin g the usual empirical estimate of

- - -  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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Peterson (1 ‘‘S) considers the following straightforward extension of (3.1)

for the survival probabilities ~i~(t) a P(TJ 
> t),  J c (1 , ..., r}, where

a T~ min (T~~ j  t J) and r � 2. The (exteLded) K-M estimator ~~ is given by

(3.2)
i

where now the product is over the ranks i of those ordered observations

such that T (j ) � t < T
(

~~
) 
and t (j ) corresponds to a death from at least one

cause j t J. Conventions analogous to those used in defining (3.1) also hold

in (3.2) when t >

Assuming independence (Al), no simultaneous causes of death (*2), and

disjoint sets of discontinuities for the marginal distributions (*3), Peterson

(1977) indicates a way to obtain strong consistency of the. K-M est imator (3.1)

in the special case when the random variables T~, ‘‘  ‘Fr are discrete.

Breslow and Crowley (1974) etc. Breslow and Crowley (1974) and Meier (1975)

show that the estimator is asymptotically normal and, as a process in t,

converges to a normal process. More recently, Aalen (1976) shows that the

bivariate vector of K-H estimators (1 - F11(t 1) ,  1 - ~i2(t2)) is asymptotically

bivariate normal , and that , regarded as a bivariate process in t1 and t2,
converges to a normal process. Estimators analogous to (3.1) and (3.2) are

proposed in the next section by using formula (2 .2) of Theorem 2.1. Such

extensions will apply in situations where the assumptions of independence (Al)

and no simultaneous causes of death (*2) fail to hold.

• - ~~~~~~~~~~~~~~~ ~~
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4. The dependent case.

In this section i~e show how formula (2.2) can be used to unify and

simplify the nonparametric approach toward estimation in the competing risks

model when independence of risks is not assumed. First, we show how (2.2)

easily establishes a f unctional relationship between distributions of “theoretical”
• random variables [the (H1, I e I} of Theorem 2.1] which are unobservable (but

estimable) and the marginal distributions M~, 1 ~ i � r , (of unobservable

variables) for which we seek estimates. Under a weaker version of assumption

(AS) , consistent estimators analogous to (3.2) are given.

In the probabilistic problem discussed in Section 2 , our solut ion (Theorem

2.1) can be described as follows. Replace the given series system of dependent

components by a “theoretical” system whose component life lengths are expressible

in terms of independent random variables so as to preserve the joint distribution

of system life length and failure patterns. The components in the so-called

theoretical system are exposed to shocks from “hanmermen” whose striking times

H7, I c 1, have distributions defined by (2.2) . A series system of r components

with depen-’~ent life lengths T1, ~~~ 
T1~jp and system life length

T — ain(Ti, 1 ~ i � r) becomes, in the terminology of competing risks an

individual exposed to r dependent risks of deat h, where T1 rep resents the

age at death if risk i were the only risk present in the environment,

i • 1, ..., r. In this sect ion , unless otherwise indicated , we drop the

assumption (Al) of independent risks. With respect to the estimation problem

posed in Section 3, formula (2.2) exhibits a relationship between distributions

of observable quantities and distributions associated with theoretica l variables

~~
, I € 7 , which are unobservable. The observable quantities in the competing
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risks model are the life length t • min(T~, 1 � I � r) and the cause of death

~~
. The functions associat ed with these observable quantities , viz., the survival

probability V(t) — P(T > t) and the monotonic functions F(t , i) • P(T � t ,

— i), 1 � i � r , appear on the right hand side of (2.2) . Thus replacing

~(t) and V(t , I) in (2.2) with their empirical counterpart s allows us to

estimat e the distributions Gi, 1 � i � r , associat ed with the unobservable

variables Hi, 1 � i � r. However, the distributions G~, 1 � i � r , are, in

general , different from the marginal distributions Mi, 1 � i S r , which we

seek to estimate. The natural question then is how to relate the unobservable

(but estimable) functions Gi, 1 5 i S r, to the marginal distributions

M~1 1 5 1 5 r. More generally, how can we relat e the functions M1, I a 1, to

the surviva l probabilities 
~1, ~ c 1, given by (2.2)? One answer can be

given as follows. That is, suppose for a moment that T1, ..., T~ are , in fact ,
• independent and that the following holds:

(AS) ’ The functions F ( ,  I) , I £ 1, in Theorem 2.1 have no comeon discont inuities.

• Then by Remark 2.4 , G1 - M1, i a 1, ..., r. Consequently,

• ~1(t) a J1 ~ii(t) II ~~(t) (4. 1)
- : is! is!

for every t £ [0, a(P)J. What are the corresponding estimators? It is a

simple exercise to show that in the case r • 2 , if we replace the functions

F(t ) and V(t , 1) on the right in (2.2) by their empirical counterparts, then

the resulting statistic is the K-H estimator (3.1) of P(T1 > t). In view of

(4.1) , if r is an arbitrary integer greater than 2 , a reasonable estimator for

M1(t) ought to be 11 ~~(t) , where the product is over i a I and is the

function resulting from (2.2) by replac ing the function s PC.) and P(. , i) with

~ 

-
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their empirical counterparts, I - 1, ..., r. Again , it is easy to show that

the resulting statistic is, in fact, the (generalized) IC-H estimator (3.2)

for i~i1(t). Thus, in the case of independent risks, (2.2) leads directly to

well-known estimator s possessing several optima l properties . It is therefore

reasonable to expect that (2.2) also plays a role in the estimation problem -

•

when the risks are mutually dependent. This is , indeed , the case.

Theorem 4.1. [Peterson (1975)]. Let T1, ~~~~~~ 
Tr be nonnegative random

variables satisfying (A2) and (*3) [but not necessarily (Al)]. Let P be a

partition of (1, ..., r} and define 
~~~~~~~ 

1 s i � r , as in (2.2). Then for

each t £ (0 , a(F) ],

• ~.i1(t) — 11i E J  ~1(t) for each I £ P (4.2a)

if and only if

P(T > t , F~Q) £ I) a f ~1, ( x) dM1(x) for each I a P, (4 .2b)

where I ’ denotes the complement of I in (1, ..., r}.

Peterson (1975) uses an operator defined on a space of distribution

functions to prove an equivalent version of Theorem 4.1. Thnploying Theorem

2.1 , we give a proof which is considerably simpler. The following notation

and l e a  is useful in interpreting (4.2a, b).

Let (T~1 1 � i s r} and (T1*, 1 � i S r} be two collections of random

variables. For each function f of the random variables T1, . .• ,  Tn let f*

denote the value of the same function of T1*, ~~~ T~~. For each set I

belonging to a partition P of (1, ..., r}, define T~(t, I) — P(T > t , IC!) a I).

On the right in (2.2), replace P(t, I) by F,(t, I) and call the resulting

expression ~1,p(t).
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The following simple leema is useful in proving Theorem 4.1:

Leema 4.2. Assume the hypothesis of Theorem 4.1. Let T1,  ~~~~~~ T1,~ be

independent random variables such that T1 and T1 have the same distribution

(i.e., M1* — H7) for each I a P. Then (4.2a) is equivalent to

- ~~~~~~~~ for each I £ P, (4.3a)

and (4.2b) is equivalent to

P~(t~ I) • V~~(t , I) for each I £ P. (4 .3b)

Proof. By (A2) and (AS) , we have that H1 and M~ have no coemon discont inuities

and P(T 1 a T ~) a O f o r each I~~J a P ~ I~~~7. Since M1 t41*, we deduce that

P(T1* a T ~* ) _ O f o r each I~~J C P , I �J .  It follows from Reaar k 2.S that if

P has exactly k members , 2 5 k S r , then each of the collections (T1, 1 a P}

and (T1*, I £ P} has at most k occurring failure patterns. By Remark 2.4 ,

a G1,p ~ (4 4)

By (2.2) and the fact that V~(t~ I) — ~~~ F(t , i),

— 111e1 ~i’ (4.5)

A simple calculation shows that

• ~~ (t1 1) a fl~ (x) 
~~~ 

(x). (4 .6)

• The conclusion follows ftc. (4.4), (4.5), and (4.6) . J I
We now give the following elementary proof of Theor em 4.1. H

_ _ _ _ _ _ _ _ _ _ _  
_  

4
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Proof of Theorem 4.1. By Leema 4.2, it is enough to show that (4.3a) holds

if and only if (4 .3b) holds.

Suppose first that (4 .3b) holds. Since

- 

~ (t) = 
~~~ 

P~ (t~ I) an~ V*(t) = 

~~~~ 
V*(t, I),

it follows from (2.2) that 
~~ 

—

Conversely, suppose that (4.3a) holds. It follows from (2.2) that

F • II and P’ • n ~~~~ where each product is over I £ P. Since

V~(t , I) — 5 (V/~1,~ )dG1~~

and

F~*(t , I) — J ~‘c:~ 
dG1*~

for each I a P, relation (4.3b) holds . f l
One drawback of Peterson ’s formulation is that the assumption of no

simultaneous causes of death (A2) does not hold , e.g. , in an engineeri ng

system where system failure can occur as a result of the simultaneous failure

of two or more components. Moreover , Peterson (1975, 1977) assumes that the

~~~~~~ distributions of T1, ~~~~~ 
Tr have no comeon discontinuities (AS) .

In Theorem 4.4 below we give necessary and sufficient conditions for a

functional relation to exist between the functions in (2.2) and the functions

M1 which we seek to estimate without assuming (A2) . Onr only assumption is

• that the functions F ( ,  I), I a 7, have no coemon discontinuities in
• 

• [0, e(P)] [assumption (AS)’]. Assumpt ion (AS) implies (AS) ’, but the

converse does not hold.  

- -

- - -  S 
~~~ r . - - -~~-~---- ~~~~~~~~~~~

• -•
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Another disadvantage in Peterson’s (1975) approach can be described as

follows. In order to establish a relation between the function for an

individual subset J of {l , ..., r} and the functions ?~~, I e 1, in (2.2),

Peterson (1975) requires that (4.2b) hold simultaneously for each set I in

a partition P of (1 , ..., r) which contains J. In general, it is not difficult

to construct joint distributions which satisfy none of the conditions in (4.2b)

yet for which at least one relationship exists between the function M~ and

the survival probabilities 
~ 
I c 7.

Let the discrete random vector (T1, T2) have a joint probability

distribution as given in Table 4.1 below :

Table 4.1. Distribution of (T1, T2)

TT1\ 2  2 4 6

1 1/24 1/8 1/12

3 1/12 1/16 0

5 1/6 1/6 1/6

A simple calculation verifies that G1 given by (2.2) equals 
g1, but

Furthermore, neither of the conditions (4.2b) is satisfied. Thus, Theorem 4.1

above is not applicable in this simple example. We will show, however, that

our generalization of Theorem 4.1 (Theorem 4.4 below) does apply here. Before

we state Theorem 4.4, it will be conveneint to introduce the following notation.

Let — {J a 1: J n I •). Let F(t, I~) — P(T ‘ t, ~
(
~) 

£ li). Recall

that the cause of death is subset I (i.e., 
~~~ 

a I] if and only if T — T~ for

L. - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~
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• eachicIand T
~~

Ti for each i
~~

I. Thus,F(t,I1) ZP(T>t,~~(TJ
.J)a

ZP(t, J), where each sum is over J a T~. For each function G, let DCC)

[C(G)] denote the set of discontinuities (continuities) of C. Note that if

the functions F (, I), I a I , have no common d iscontinuities, then D(F( , 11)1 —

u D(F(., J)], where the union is disjoint over sets J a l~.

Theorem 4.4 below resembles Theorem 4.1 in that we find necessary and

sufficient conditions for a relationship to exist between the functions

I a I , and the survival probabilities 
~I’ I £ 7, given by (2.2). It generalizes

Theorem 4.1 in the following ways. First , the assumption (A2) of no simultaneous

causes of death is dropped. Secondly, we assume a weaker version of assumption

(AS), namely the assumption (AS)’ that the functions F(., I), I a 1, have no

common discontinuities.

Theorem 4.4. Let T1, ~~~~~~ 
Tr be nonnegative random variables satisfying (AS)’.

Let I a I. Then for each t £ [0, ~ (F)],

~i1(t) - ii ~~(t) (4.7)
JeT 1

if and only if the following two conditions hold :

F(a)/V (a ), a cD(F( ., Ti))
M1(a)/H7 (a )  • (4.8a)

1, otherwise.

and

~~
1I
~ 

� tfT1 — t) a P(T1, ‘ tIT1 ‘ t), (4 .8b)

where is given by (2.2) .

—A
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• The proof of Theorem 4.4 is given in Section 5.

Remark 4.5. Suppose that the random variables T1 — ain(T~, i a I) , I £ I,

have absolutely continuous distributions. Let a1(t) (111(t)J and .111,(t)

[11111,(t) ] denote respectively the density (distribution) function and condi-

tional density (distribution) function of T1 and T1 given T1, t. Then

condition (4.8b) is equivalent to

— a1(t)/H1(t).

In other words, the conditional failure rate function of T1 given T1, > t is

equal to the (unconditional) failure rate function of T1. Stated differently,

the random variables T1 and T1, are independent “along the diagonal T1 - T1,”.

Desu and Narula (1977) arrive at a condition similar to (4.8b) in the special

case when the assumption of absolute continuity (A4) [and hence also (A2)]

holds.

Note that conditions (4.8a, b), in contrast to (4.2b), apply to only one

subset I £ I at a time. Consequently, we can proceed in Example 4.3 as follows.

It is easy to verify that conditions (4.8a, b) hold. Since 
~(1 2} E 1, it

follows from Theorem 4.4 that P41 -

We have previously remarked that the assumption (A2) of no simultaneous

causes of death is unrealistic in certain models of interest. An important

family of uzitivariate distributions for which asmaption (*2) fails is the

family of aittivariate exponential O’IVE) distributions of Marshall and 01km

(1967). We illustrate with an example.

— -~ ._
rss~ - ~~~~—~~ --- - - -

~ 
- - 

~~~~ -~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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Example 4.6. For simplicity , suppose that the random vector (T1, T2) has the
Marshall-Olkin bivariate exponential distribution with survival probability:

P(T1 > t1, T2 > t2) - exp[-11t1 - 12t2 - 112 max(t1, t2)],

for t1, t2 � 0 and A l, 12, 112 > 0. Since the marginal distributions H1 and H2
are continuous, condition (4.8a) trivially holds. Condition (4.8b) with

I — {1) states that

P(T2 � t~T1 — t) — P(T2 > t~T1 > t) .

An easy computation shows that these conditional probabilities are each

equal to exp(-A 2t). Thus, Theorem 4.4 may be applied when the joint distri-

bution belongs to the family of Marshall-Olkin WE distributions, whereas
Theorem 41 cannot be applied here since (A2) fails.

In Section 3 we assumed that the risks were mutually independent (A!)’
and that the functions F( , I), I a 7, had no common discontinuities (AS)’.

Under these assumptions the basic formula (2.2) yielded the K-N esti~~tors
for the marginal distribution H1 (r 2) and the funct ions H1, I £ I, (r � 2).

In a similar fashion formula (2.2) (via Theorem 4.4) can be used to determine
strongly consistent estimators for the functions 

~I’ ~ £ 1, in the important -
practical cases when independence fails to hold and simultaneous. - causes of
death are allowed.

The key tool we shal l use in establishing consistent estimators for tbe ’
marginal distributions of interest is given in Theorem- 4.7 below . First we
introduce some notation. As above, Ta (T1, •.~~~, 

T~) is a vector of nonnegative



- - - 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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• random variables, r - nin(T~ 1 
~ 
j ~ r) represents the life length of an

individual exposed to r risks of death and ~ represents the cause of death,

where F~ - J if and only if t a T~ for each j  a J and t * T~ for each j  4 J,
J £ 7. For each I £ 7 and Borel set A , let F(A , I) — P(’r c A, F~ — I) . Let

t have distribution function P and let D(I) (C(I)] be the set of discontinuities

[continuities] of the function P( . , I) . There exists, by Theorem 2.1, a

collection (H1, I a I) of independent random variables such that H ~, where

H a min (H1, I a I). Moreover, the probability ~1(t
4
) - P(H1 ~ t) may be

obtained from (2.2). Now let a (T~~, ..., Trj)~ 
i — 1, 2, ..., be a

sequence of nonnegative random vectors (representing a sequence of individuals)

and let r1, F~1, Fi(. , I), Fi, DCI , i), C(I , i), H1 i’ ~~ and 
~~ 

be the

analogues of t , ~~, F(• , I), F , D(I) , CCI) , H1 H , and above. Let pC(pD)

denote the continuous (discontinuous) part of F.

Theorem 4.7. Suppose the following conditions hold:

4(i) For I ~ 3, the pair (F( , I), P ( ,  3)) as well as each pair (F i(., I),

F~(. , 3)) , j  a 1, 2 ..., have no common discontinuities.

4(u ) Forlalan d0� t�a (P ),

h a n,,, F (( (0 , t] n CCI) ) , I) — pC([0 t], I) .

4(iii) For I a 7,

h a  sup tF~ ( ((0, u) n D(I))), I) - P0((0, u], 1)1 a 0.
n4~ 0�t�a(P)

4(iv) h a  sup (~
. 
(t) - ~(t)( a 0,

n4c. 0�t�a(F) n

L - - _ • ~~~~~~,- ~~~~- ._— —-—.~ -——.---- -~~~~~-.-~~~~ —~~~~~~~‘~~~~ -- -—- ~~~~~-~~~r ~~~~~~~~~~~~~~ 
-
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Then for I a  l and O � t

lint G1 n(t
~~ 

G1(t4 ) . (4.9)

The proof of Theorem 4.7 is given in Section 5.

Consider now the estimation problem posed above. Let - (Tu, •. .,

i a 1, 2, ..., be independent and identically distributed as T a  (T1, ...~~

Replace PC . , I) and F by their empirical counterparts, 
~~~~ 

I) aM

respectively, on the right in (2.2) . The resulting expression, call it

is an estimator for 
~~ 

Assume that T satisfies (4.8a , b).  Then (4.7) holds.

A natural estimator for M1(t) in this case , then , is

• 
ff ~ Ct) = if ~~ Ct) . (4.10)

Ja11 ~

Such an estimator will be strongly consistent if for every J £

+ ~3Ct 4 ) a.s. (4.11)

We now show that this is a simple consequence of Theorem 4.7.

In Theorem 4.7 identify F~(~~ I) with ~~C ,  I) and ~~ with 
~n’ where

— 

P~(t~ I) - ~ ~~~~~~ S t , a I)

• ~~(t) 
_ ~-l 

~~ T � t}’tel i

and XA is the indicator function of the set A. Define 

- - - — ~~~~f l- af l ~~~~t..f l rr ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - • -- - -
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FC(I) n (t) - ~-l 
~~X (t a [0, t] n C(I) , 

~~ 
- I)

I- ’ PD(I) n (t) n ’ 
~~~~~~~~~ £ (0, t] n D(I) , 

~i 
— I).

It follows that

~~~~ 
I) 1

~C(I) ,n ~ ~
‘D(I) ,n (4.12)

and

~ n (4.13)
leT - ,

We denote the common domain of all random variables by Q. To prove (4.11), it

suffices to verify conditions 4 (i) - 4(iv) of Theorem 4.7 for almost every

w a fi.

Condition 4(i) holds trivially. By the strong law of large numbers , we

have that as n -~

~C(I) ,~ Ct) + FC((O, t], I) a.s., t ~ 0 (4.14)

and

~D I ,n t ~ ~~~~~ ~~, n a.s., t � 0. (4.15)

Condition 4(u ) follows from (4.14). By the Ghivenko-Cantelli Theorem,

him sup IP~(t) - F(t)I + 0 a.s. (4.16)
• fl4W t�O

! S — - ~~~~ - 
~~~~~~~~~~~~ _, , _ _ _ . • nC, _~~~~~ .. .  —--
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Thus, condition 4(iv) holds. Since the function ~C([0, t], I) is a continuous
• function of t , it follows that the convergence in (4.14) is uniform in t.

Thus, we may conclude from (4.12) and (4.16) that the convergence in (4.15)

is uniform in t � 0 and so condition 4(iii) holds.

Remark 4.8. Let 0 T (0) S T~ 1~ S S T
o 

denote the ordered values of

‘1’ ‘~~~~~‘ ~n In analogy with the Kaplan-Meier estimator (3.2) , th~ estimator

(4.10) may be expressed as follows:

• 1i1(
t) x II [(n-i)/(n-i.l)], (4.17)

i

where the product is over the ranks i of those ordered observations

1 S i S n, such that t (i) ~ t < T (j~) and r (i) corresponds to a death from the

simultaneous causes j  £ 3, J a T~ . If for some i~ - T~~ for each j  t 3,

3 £ l~, then (4.17) is defined to be zero for t > r~~~. Otherwise, (4.17) is

undefined for t >

In view of Remark 4.8 and the preceding argument , we have proven:

Theorem 4.9. In the competing risks model of Section 3, assume only that the

functions P (, I), I a I, have no common discontinuities, and the joint distri-

bution of (T1, •• •~~ 
Tr) satisfies (4.8a, b). Then the estimator (4.17) is

strongly consistent for

Remark 4.10. To show consistency of the K-M estimator in the independent case,
• Peterson (1977) must rely on a property of an operator defined on a space of

discrete distribution functions (which he states without proof). If we au*ae

that the risks are independent and that assumption (*3)’ holds, then by applying

Theorem 4.7 above , as we did in the dependent case, we not only have a stronger

proof of the consistency of the K-N est imator (since (*3) implies (AS)’], but

also one which is considerably more elementary .
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5. Proofs.

Before we give a proof of Theorem 4.4 , we state two lemmas which are

proven in LPQ (1978).

Lemma 5.1. For every probability measure Q (with a possible atom at .) such

that ~ ( 0 )  — 1, and every t � 0, the following holds : —

- exp [ _J ~ (dQC
/ ~J U (~ (a)/~(a ) J ,  (5.1)

where the product is over the set (a} of discont inuities of Q, and the product over
an empty set is defined to be 1.

Lemma 5.2. Let { , I a I} be a collection of survival probabilities

satisfying (2.2) . Then for each I a I and t a (0 , e(P )),

t £ D(P( . , I))

1 otherwise.

Proof of Theorem 4.4. Suppose (4.8a , b) holds. By (4.8a) ,

— D(M1), I a 1. (5.2)

For every Borel set B c (0, a(P )), - -

F(B , 11) P(T a B , ~OTJ £

P(T1 c B , T1 �T 1,)

. J P ( T1, aI uIT1 au ) df41(u)
• B

• — J POT1, ‘ u~T1 u) &41(u) (by 4.8(b)]B

— — J (V(u)/~1(u)] ~~~~~B

-_ _ _ _
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Thus, for every Boreh set B c  (0 , a(F)),

F(B, II) a 5 (Y,61
1
) dM1. (5.3)

Relations (5.2) and (5.3) together i~~ly that

~~C 0, l ),d)4 C Vp,

It follows that

U ~3(t) exp(-f~ (dVC (. , I~)/FJ } U
JeT 1 acD(F( . , 

~~~

— •xp{_Jt(~j,4 C/gJ} g
aeD(M1) (by 4.8a3

— ~i1(t) [by Lemma 5.1].

Conversely, suppose (4.7) holds. By (2.2) and Lemma 5.h ,

exp( _f
~[dPC(. , I )/F)) II [F(a)/F(a )]

ast
aeD(P(. , ‘I~~ 

(5 4)

— .xp[..f
t (dJ4 C/1)]

acDQ11)

Letti ng U denote the product over sets J a T~ , we have

• 
i1(a) Oi1( a )  - fl(~3(a)]/R(~~(a ) ]

a a D(P (~, 3))

— 

1 otherwise

a a D(F(., 7k))
a

1 other wise.

- ~~~~~~ r-~~~~~~~~~~ St~~~ ~~•~~~
_____________
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• Thus, (4.8a) holds. Bquat ion (4.8b) follows from (5.4) by cancellation. II
Before vs prove Theorem 4 • 7 we make two explanatory remarks.

R srk 5.3. Au~~ tions 4(i) and 4 (ii) of Theorem 4.7 together imply that
for I a 1,

11.. sup IF ((t}, I) — F((t }, I)~ — 0.
n’~ 0~tce(P) ~

Remark 5.4. Re rk 5.3 implies that for I a 1,

D(I) c u n DCI , k).
n-l kan

The proof of Theorem 4.7 is based upon the following tlwee le~~~s.

Lemma 5.5. Under assumptions 4(i)-4(iv) of Theorem 4.7 ,

a~~~!~~~~ Ol~) � u(F) . (5.5)

~~~of. It suffices to consider the case a < —. Let (a) be an arbitrary
infinite subasquenc. of (1, 2, ...} such that h a  a(F

~) — a. By definition ,
a..

~a
1
~~

’a~ 
— ~~. By 4 (i v) ,  1ii~t rca (Fm)j  a 0. !ienc~ FCcz) 0. Relation (5.5)

follows f o m  the definition of a (F) . I I

In L~~~-s 5.6 and 5.7 below, let (a} denote an arbitrary infinit, sub-
s.qu.nc. of (1, 2, ...}, let I a I, and let 0 ~ t S a (F) .

Lu aS.6. Let

~~,m0t) 
J0

xoci~~3
( )  X(O t) n

$~(t) I X D(I) Ca) 
~fo,t) ~



~i I  
27

• 11 B~ aCt) S B~(t) . (5.6)

~~ of. By Fatou’s Lemma,

T 1B~ (t) � } TI~~~(a)aeD(I) m~~ D(I ,a) n [0, t) n (O ,s(F~)) ii a

By Remark 5.3, h a  XDU a) 0
~~ 

— 1 for a a D(I) . By Lemma 5.5 , him x (a)
a.— ‘ a.- (o,t) n (0 ,a(I~ ))

— X (O ,~) (a) . Assumption 4(iv) implies that

ha tn(P.~
(a)/PR(a )] - tn (F(a)/P (a )].

Relation (5.6) follows . II

Le a 5.7. Let

B~ Ct) — ~ (a) Ln(P (a)/P (a )]
aaD( I ,a) (0,t) n [O ,a (P )) n C (I) ~

n [O,a(F~))’~ ’ ~ m~~’ ‘~

and

B2
1(t) — x (a) &n [P(a)/P(a )J

asD(I) [0,t) n (0,a (F) ) n CC I)

n [O,a(P))’~ 
dF(, I) .

Thin

I~ ~~~ 
s 12

1(t) . (5.7)
a.- ,

— --- - 
• 1 - A~~~~~:

- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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Proof. L e t e ) 0 .  8y 4(i) ,

n (0,a(Pm)) n C( I) tf1Fm 0*)l~ ,s( 5 ) )

— 
l/F~

((U) , I)
— -f x (u) 1.n[l • F ((u}, I)/Fa (U)J d P (u, I)

(0,t) D(I ,a) n CCI) n (O,a(Fa)) • 
a

n C(I) n [O~~(F ))~~1 d P
~

(. , I)

for a sufficiently large by 4 (iv) . Again by 4 (iv) ,

(;~t)~~c(1.m) n (0 J~~Fa)) R 
d 

~a~~’ ~

S £ (;J ) (X ccI) n C(I,a) n (0
~

U(Pa))”~~ 
d P ( •  I) .

Hence

B
~,a

(t) 5 2 £ 

[0
_1

6J (x C(I) ~ ~~~~~~~~~~~~~~~~~~ d P
~

( ,  fl

fo r o < 6 t. Itfollows from Lea5 .S that

h a  1 (u) (u) i 0n (O ,a(F~)) X (o,t_6] l

Therefore, for m sufficiently large,

B~,1(t) 5 2 a • c/T(t) ..J (x1~(1)/fl d F,~( ,  I).

Using the H.hly-Brsy Thsorim, vs concluds from 4(u ) that

TI~ B~,a(t) S 
~0,{..41tk(I)’~’l 

d P C . , I)

for every 4 such that 0 c 4 t. Relation (5.7) ii established by letting

4 4 0. (~ 

•—-_____________

- - - -——-—- - --- — — - ---•-- - •- - - - - -~~-•-- .••-~~~
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Pr oof of Theorem 4.7. L e t I c l , 0 � t s a(F) , and (m} be an arbitrary infinite

subsequence of (1, 2, ...}. By (2.2),

- eXp(B~ (t) + B~~~(t) ].

By Lesmas 5.6 and S.7 ,

IIi ~ (t ’) � exp(B~ (t) + 81(t) ] —a 2 
—

By Theorem 2 • 1, we may conclude that

P(t � t) — II 
~

•
I Ct ’).a Ia! ,a

Thus,

— him U ~ ( t )  S if 13j~~ Ct ’) � if ~ Ct ’) a
a~~ hi ,a Ic! m-~. Ic?

Hence, ~~ii 
•

(t 4 ) a ~1(t). I I
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